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Control of ultranarrow Co magnetic domain wall widths in artificially
patterned H-bar structures
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Micromagnetic simulations of Co domain walls on nanometer crossbars that join two oppositely
magnetized parallel legs of “H” shaped patterns are studied. The crossbar domain walls can twist in
the plane of the H-pattern, out of the plane, or swirl, forming Néel, Bloch, or vortex structures,
respectively, depending on the initial configurations. An energy phase diagram as a function of the
crossbar constriction yields the Néel wall as the energetically most favorable, followed by the Bloch
wall, which becomes unstable and changes into a vortex-like wall with increasing crossbar size.
Most interestingly, the Néel wall width can either shrink or expand depending on the crossbar
dimensions. In the case that both the crossbar length and width are small, desirable, ultranarrow
domain walls can be obtained. These findings are useful for spintronic device design based on
domain wall pinning via nanonotch and domain-wall magnetoresistance approaches. © 2009
American Institute of Physics. �DOI: 10.1063/1.3082046�

The rapid development of magnetic data storage is mov-
ing toward devices in the future with no moving parts, such
as the proposed “race track” memory.1 To increase storage
density while avoiding the thermal instability problem �the
superparamagnetic limit�,2 the challenge has become to ex-
plore the third spatial dimension. In current-driven race track
memory, nanonotches have been proposed to pin domain
walls3 and the effect of the pinning has been observed.4,5

How large a current is required to drive the domain walls and
how fast the wall can be driven are key issues.6 Recently, the
threshold current was predicted to be strongly reduced when
the domain wall width narrows, as the momentum transfer
instead of the spin transfer effect is dominant.7 Therefore, it
is important to investigate how the domain-wall properties
evolve with the nanonotech geometry. Furthermore, the re-
duction in the domain wall width might lead to an enhanced
magnetoresistance, which is potentially useful for spintronic
devices.8,9 Domain walls also can be used as single objects in
magnetic logic or memory devices.10

Traditionally, the width of the domain wall was believed
to be determined by material parameters. However, Bruno
predicted11 and it was experimentally confirmed12 that the
Bloch domain wall width can be strongly reduced under nan-
ometer constraints. Néel walls are commonly found in thin
film systems, which are the materials of choice for spintronic
devices. Thus, it is essential to understand how Néel walls
evolve with geometric nanoconstraints. Micromagnetic
simulations have been carried out for Néel walls in the per-
malloy system.13 The wall width was reported to initially
decrease with confinement and then reach a constant value
without achieving ultranarrow width. The Co system was not
previously addressed, but Co is appealing because its domain
wall is intrinsically narrow, only �16 nm. This makes Co
easier to reach the ultranarrow region under the nanoconfine-
ment. Further, the domain-wall width of Co can be of the
same order of magnitude as the confinement size, yielding a

competition that may lead to interesting phenomena.
In this letter, we present micromagnetic simulations for

confined Co domain walls utilizing the NIST OOMMF code.14

As showed in Fig. 1, H-shaped samples with total length
and width being L1=92 nm and W1=300 nm, respectively,
are used. The thickness of the structures is 2 nm. The hori-
zontal crossbar with dimensions L0 and W0 represents the
constrained length and width, respectively. The magnetic
easy axis is parallel with the two legs of the “H,” as was
considered by Bruno11 for Bloch walls. Typical material pa-
rameters of Co are used: the saturation magnetization of
Ms=1.4�106 A /m, the uniaxial anisotropy constant of
K1=4.1�105 J /m3, and the exchange constant of A=2.85
�10−11 J /m. The cell size of 1�1�1 nm3 is used in most
of our simulations. To check the precision, we also compared
some results with the data obtained with the cell size of
0.5�0.5�0.5 nm3 and did not find any change in our main
results.

We find that different types of domain walls can be sta-
bilized depending on the different initial configurations. We
vary the initial configuration by changing the magnetization
configuration of the crossbar to be parallel, perpendicular to
the crossbar, or randomly distributed. Figure 2 presents three
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hfding@nju.edu.cn.
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FIG. 1. �Color online� Schematic description of the H-bar geometry used in
the simulation. The magnetic easy axis is along the two legs of the H, and
the crossbar at the center represents the constriction. The thick arrows show
the local magnetization orientation.
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typical domain walls �Bloch, Néel, and vortex wall� obtained
during the simulations. Typically, when the magnetization in
the crossbar is configured to be perpendicular to the crossbar,
a Néel wall is obtained. The other two configurations may
yield the Bloch wall or vortex wall depending on the cross-
bar size. At a small scale of confinement �length and width�,
both Bloch- and Néel-type domain walls can be stabilized.
With increasing dimension of the crossbar, the Bloch
wall is no longer stable and changes into a vortex-type wall.
The vortex wall has been experimentally observed in the
permalloy system.15

To compare the stabilities of the different types of do-
main walls, we plot their total energies as the function of the
crossbar size. As shown in Fig. 3, for L0=12 nm, the total
energies increase essentially linearly with W0 for all three
types of domain walls. The slopes are different for the dif-
ferent domain wall types. We can see that the total energies
of the Néel wall configurations �solid squares� are consider-
ably lower than those of the other two types of configura-
tions for the same given geometries when W0�2 nm.

It is understandable that the Néel wall is of the lowest
energy for the thin film case. The total energies mainly come
from the configuration confined inside the walls, and no ex-
plicit change in the magnetic configuration is found as W0
increases. Therefore, a linear dependence with W0 is ex-
pected. With increasing W0, the total energy of the Bloch
wall is considerably increased and the Bloch wall becomes
unstable and transforms into a vortex wall. From the con-
figuration, one can see that a vortex wall can be considered
as a combination of a Bloch wall at the center and Néel walls
at the outer parts. Therefore, its total energy is lower than the
Bloch wall but higher than the Néel wall when W0 is large
enough for vortex formation. To check the generality of the
phase diagram, we also compared the stabilities for different

crossbar lengths L0 �not shown�, and the same conclusion
can be drawn.

As presented above, the Néel wall configuration is found
to be the ground state. In the following, we will focus on the
crossbar size-dependent domain-wall width for the Néel
walls. Quantitatively, the wall width WDW is obtained via
fitting the simulated position-dependent magnetization along
the y direction My�x� utilizing the formula My�x�
=Ms tanh�2�x−x0� /WDW�, where Ms is the saturation magne-
tization and x0 is the center position of the wall. The inset of
Fig. 4 shows a typical domain-wall line profile. The symbols
are the simulated data and the curve is the fitted result. As
shown in the figure, in most of the cases, the function fits the
simulated data well.

Figure 4 shows the Néel wall width as a function of the
crossbar length L0 for different widths W0. Interestingly, we
find that the dependence can be classified into two regions.
When L0�24 nm, the domain wall width shrinks in com-
parison with the standard Néel wall width without confine-
ment WDW

0 . When L0�24 nm, the domain wall expands.
There is a crossover point at L0=24 nm, i.e., the wall width
is independent of W0 at L0=24 nm. For different W0, the
deviation in the wall width from the standard width is differ-
ent. The smaller the W0, the larger the deviation. When W0
�60 nm, the wall width is almost independent of L0. When
W0�60 nm, the wall width shows an essential linear depen-
dence with L0 when L0�24 nm. The slopes of the linear
dependence depend on W0. The slope is larger when W0 is
smaller. With further increasing L0, the wall width deviates
from a linear dependence and reaches a saturation value. The
saturation values are different for different values of W0. The
smaller the value of W0, the higher the saturation value.

To quantify the size-dependent domain wall width, we
fitted the individual L0 dependent wall width data sets for
different W0. For each set, we further identified the W0 de-
pendence. Interestingly, we find that most of the data can be
described with a single formula shown below with a=2.5,
b=17.6, c=13.8, and d=13.8 in nanometers,

WDW

WDW
0 = 1 + �1 −

a

1 + e�L0−b�/c�e−W0/d. �1�

The fitted data are plotted as the solid lines in Fig. 4. We can
find that they agree well with the simulated data �the

( )a ( )b ( )c

FIG. 2. Different types of domain walls obtained during the simulations. �a�
Bloch wall, �b� Néel wall, and �c� vortex wall. All the images are 14
�16 nm2.
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FIG. 3. Energy diagram of the different types of domain walls for L0

=12 nm. Symbols are simulated data and the lines are the linear fits.
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FIG. 4. Crossbar size-dependent Néel wall width. Symbols are obtained
from the simulations. The lines are the fittings utilizing formula �1� shown
below. The inserted figure shows the typical domain wall profile; symbols
are simulated data, and the line is the fitting with the formula My�x�
=Ms tanh�2�x−x0� /WDW�.
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symbols�. Only when the domain wall is strongly expanded
that small deviations are found. By varying the material pa-
rameters, we find that the fitting parameter a is linearly pro-
portional to �AK1

3 /Ms, while the other three parameters are
both geometrically and material dependent.

To understand the physical picture, we initially neglect
the magnetostatic energy and discuss this important effect in
the next paragraph. In this case, the domain wall is deter-
mined by the competition of the exchange energy and the
anisotropy energy. In the presence of the nanoconfinement,
Bruno11 pointed out that the domain wall structure can be

obtained by solving the Euler equation �̈+ �̇�Ṡ /S�
− �F���� /2A=0�, where �, S, and F��� stand for the magne-
tization orientation, geometrical function, and the anisotropy
energy, respectively. The second term, i.e., the product of the
magnetization orientation gradient and the geometrical gra-
dient divided by the geometrical function, leads to the reduc-
tion in the domain wall. When L0 is small, the magnetization
orientation gradient and the geometrical gradient appear in
the same region; therefore, a reduction in the domain wall
width is expected. With increasing L0, the second term in the
Euler equation decreases as the geometrical change moves
toward the outside of the wall, resulting in less reduced do-
main wall width. Within a certain approximation, Bruno ob-
tained a linear dependence with L0 for the domain wall
width. The reduction in the domain wall also depends on W0.
For the same given L0, the smaller the W0, the stronger the
reduction. When the magnetostatic energy is neglected, the
same argument holds for both the Bloch wall and the Néel
wall cases.

In reality, the magnetostatic energy also needs to be
taken into account for the estimation of the domain wall
width. For the Néel wall shown in Fig. 2�b�, the magneto-
static energy mainly comes from two parts, the volume
charge of each side of the domain wall and the surface
charge along the y direction. Both want to expand the do-
main wall. Similar with the exchange energy and anisotropy
energy inside the confined region, the static energy caused by
the volume charge is proportional to W0. Therefore, it would
not influence the domain wall width when W0 changes. The
surface charge, however, is inversely proportional to W0. It
could expand the domain wall at small W0. When the domain
wall width is very narrow, this effect, however, is mainly
canceled out as the static energy can be reduced by the op-
posite surface charge of the same surface on each side of the
domain wall. In this case, the domain wall width is mainly
determined by the geometrical constriction similar as in the
Bloch case. This explains our findings shown in Fig. 4 when
L0�24 nm. When the domain wall is strongly expanded,

e.g., the upper arm of W0=8 nm, the magnetization configu-
ration tends to deviate from the hyperbolic function used to
describe the wall width. Therefore, the dependence deviates
from the formula described above.

Above we discussed that the case for the magnetic easy
axis is parallel to the legs of the H. When the easy axis is
perpendicular to the legs, a cross wall with reduced wall
width can also be found. The detailed dependence is slightly
different as different types of domain walls are obtained.

In conclusion, we have investigated the nanoconfine-
ment effect on domain walls for Co thin films via micromag-
netic simulations. The Néel wall is found to be the ground
state in comparison with the Bloch wall and vortex wall. The
Néel wall can either shrink or expand depending on the geo-
metric sizes. This dependence mainly comes from the com-
petition of the nanoconfinement effect and the magnetostatic
energy. In the case when both the confined width and length
are small, the domain wall can reach the desirable ultranar-
row limit. The findings are useful for spintronics device de-
sign based on the domain wall pinning via nanonotches and
domain wall magnetoresistance approaches.
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