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Searching for new materials hosting flat bands is pivotal for exploring strongly correlated effects and
designing sensitive quantum devices, but remains challenging. We present a general method for realizing
flat bands based on mathematical optimization and symmetry analysis. The method enables the discovery
of ∼1000 types of two-dimensional lattices that can host flat bands, in sharp contrast with ∼10 flat-band
lattices predicted previously besides the well-known ones. We further verify the method using first-
principles calculations. Our approach provides new insights for the design of flat-band lattices, particularly
when aiming to create experimentally feasible configurations.
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Flat bands have emerged as a central topic in condensed
matter physics and materials sciences [1–5]. Owing to their
unique dispersionless energy-momentum relation, elec-
trons in flat bands possess vanishing group velocity and
a divergent effective mass, resulting in negligible kinetic
energy [6,7]. Consequently, weak interactions or disorder
cannot be treated as perturbations. Thus, flat-band systems
can be exceptional platforms for investigating strongly
correlated effects and designing extraordinarily sensitive
quantum devices. Since the discovery of ferromagnetism
induced by the Hubbard interaction [8,9], extensive studies
have been carried out to investigate the exotic physics of flat
bands, such as Anderson localization [10], disorder-induced
multifractality [11], topological phase transitions [12],mobil-
ity edges [13], compact breathers under nonlinearity [14],
and superconductivity [15], etc.
Given the significance of flat-band systems, various

methods have been proposed for constructing systems
containing flat bands. Essentially, they can be classified
into two categories. Brute-force search approaches screen
for flat-band materials from the first-principles material
databases [16–18] or the k-uniform tiling database [19,20].
These methods have yielded fruitful outcomes, extensively
categorizing most known materials and establishing com-
prehensive databases. However, they lack the capability to
design newmaterials and to control the energy of flat bands.
An additional strategy is needed to tune the flat bands to the
desired energy. Other methods, such as origami rules [21],
local unitary transformations [22,23], line graphs [9,24–27],
miniarrays [28], chiral symmetry [29], local symmetry [30],
latent symmetry [31], embedding mechanism [32], etc.,
involve constructing specialized Hamiltonian matrices and

mapping them onto lattices to achieve flat bands. These
methods rely on solving a series of constraint equations to
meet the requirement of destructive interference of the
electron wave functions. These efforts have successfully
constructed certain flat-band lattices. The results, however,
are still rather limited. Only ∼10 new flat-band lattices,
besides the well-known ones, were obtained. Some of them
were obtained by assuming that the next nearest-neighbor
(NN) hopping is either negligibly small or even larger than
the NN hopping, which is challenging to realize in real
systems.
Recently, two-dimensional (2D) materials have attracted

widespread attention due to their unique properties and the
rapid expansion of the materials repertoire. Owing to the van
der Waals bonding between layers, they can be assembled
in a LEGO-like manner to produce rich novel materials,
including flat-band structures [33–41]. Furthermore, through
atomic manipulation or molecular self-assembly, resear-
chers can construct materials that do not naturally exist
at the atomic scale and investigate their exotic properties
[1,42–50]. Similarly, other approaches can be used to
construct new materials in a designed manner, such as the
optical waveguide networks [51–53], exciton-polariton con-
densates [54,55], and ultracold atomic condensates [56–58].
These engineered materials are stabilized by the supporting
substrate or optical potential well, etc. With high tunability,
they significantly broaden the parameter space for searching
flat-band lattices. Apparently, not all lattices possess flat
bands, and these kinds of experiments are typically expensive
and time-consuming. This underscores the need for an
efficient method to design flat-band lattices before carrying
out real experiments.
Here, we demonstrate a general flat-band generator using

a nonlinear programming method. Essentially, we utilize
two strategies to simplify the complexity of the problem.*Contact author: hfding@nju.edu.cn
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First, we reduce the uncertainty associated with hopping by
using preestablished distance-dependent overlap energy.
Second, we impose symmetry constraints during the flat-
band lattice generation process, further narrowing the
search space for the site positions. As a result, the task
of constructing the flat-band lattice can be completed in a
short time. Utilizing two typical dependencies, we search
for lattices exhibiting flat bands across all 2D space
groups. Remarkably, in both cases, we find ∼1000 flat-
band lattices [structures and band details are provided in the
Supplemental Material (SM) [59] ] for the number of sites
within a unit cell no more than 11, indicating that they
are more abundant than commonly thought. We further
verify our approach using first-principles calculations. Our
method paves a new avenue for the design of flat-band
lattices, particularly when creating experimentally feasible
configurations.
We first utilize two typical examples to illustrate our

approach. The first one is the kagome lattice, whose unit cell
contains three sites [Fig. 1(a)]. For a lattice containingn sites
in a unit cell with the primitive translational vectors R1, R2,
the position of site i in cell l (2D index) can bewritten as rl;i.
The Hamiltonian of the system can be written as

H ¼
X

l;i

μic
†
i ci −

X

l;i

X

δ

Jδðc†l;icðl;iÞþδ þ H:c:Þ; ð1Þ

where μi denotes the on-site energy at site i, and Jδ is the
overlap integral between neighboring sites. c†l;i and cl;i stand
for the fermionic creation and annihilation operators at rl;i,
respectively. For a kagome lattice with the NN hopping, J1
only, its band structure shows a flat band at E ¼ −2J1 when
μi ¼ 0 [Fig. 1(b)]. This is the well-known electronic
structure of a kagome lattice and can be readily generated
using our newly developed flat-band lattice generator, as
illustrated below. Similarly, complex lattices generated by
our flat-band lattice generator can also possess flat bands.
For example, in Fig. 1(c), where the hopping between atoms
follows a distance dependence as Jδ ∝ ð1þ d=a0Þe−d=a0
(similar to the hopping between the 1s states of two
hydrogen atoms [63]), where a0 is the Bohr radius, and d
is the distance between two hopping sites, namely
d ¼ jrl;i − rðl;iÞþδj. The corresponding energy bands
[Fig. 1(d)] reveal two flat bands, highlighted in orange.
Based on the above two examples, we find that the

energy bands are entirely determined by R1, R2, the
positions of each site within a unit cell, rl;i −Rl and Jδ,
which depends on the relative positions between the
hopping sites. With a known distance-dependent hopping
JðdÞ, the energy bands are completely determined by the
positions of the sites. Through a Fourier transform, the
Hamiltonian in Eq. (1) can be converted to a Hamiltonian in
k-space: HðkÞ (SM Note 1). Solving the eigenvalue
problem yields the energy bands

det jHðkÞ − εIj ¼ 0 ð2Þ

To obtain flat-band lattices, it is natural to choose the
energy bandwidth ΔE of each band as the evaluation
function. The objective is to minimize ΔE below a given
threshold by adjusting R1, R2, and rl;i −Rl. To find as
many flat-band lattices as possible, we repeat the process
for every band and also crosscheck the lattice to avoid
double-counting when more than one flat band was found
in a lattice. In this work, we utilize the simulated annealing
(SA) method [64–66], an algorithm commonly used for
finding optimal solutions to various optimization problems.
Therefore, we refer to our method as the SA flat-band
(SA-FB) generator.
As shown in the diagram in SM Note 2, our SA-FB

generator begins with a random lattice. In each iteration, it
calculates ΔE of the new lattice generated through the
random walk and updates a temporary ΔEtemp according to
the Metropolis sampling rule with a certain probability. In
the end, the results are classified based on ΔEmin (the
minimum of ΔEtemp) of the best solution.
Figure 2(a) presents the ΔE-step curve, with the corre-

sponding evolution of the positions of the lattice sites
shown in Fig. 2(b). It shows that ΔEmin and the fluctuation
ofΔEtemp decreases to almost zero. By comparing the initial
lattice and its corresponding band structure [Figs. 2(c)
and 2(d)] with the typical intermediate configuration

FIG. 1. Two examples of the flat-band lattices and their
corresponding band structures. (a) Structure of a kagome lattice.
(b) Energy band of a kagome lattice with the NN interaction J1
only, showing a flat band at E ¼ −2J1. (c) Structure of a complex
flat-band lattice designed by our flat-band generator with its
energy band containing two flat bands as shown in (d). Flat bands
are highlighted in orange.
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[Figs. 2(e) and 2(f)] and the final lattice [Figs. 2(g) and 2(h)],
it is evident that the SA-FB generator does gradually achieve
a flat band (marked in orange) by fine-tuning the positions of
the sites.
Existing works have shown that flat bands are closely

related to symmetry [16,27,30], our SA-FB generator
constrains the lattice under a specific 2D space group to
improve efficiency. In each iteration, one of the sites
attempts a random walk while preserving symmetry. To
achieve this, we classify the site positions into three
different types and impose specific rules for each type
individually (SM Note 2).
In the calculation, it is important to consider higher-order

NN hopping terms. The calculation, however, becomes
impractical if all possible hopping between any two sites is
included. To maintain computational efficiency while
capturing the essential physics, two additional rules are
applied: (1) the threshold rule, which states that since weak
hopping has negligible impact on the band structure, all
hopping below a certain threshold (e.g., JðdÞ < ðJ1=10Þ) is
discarded. Note that the threshold can be adjusted depend-
ing on specific requirements. (2) The modulating rule,
which states that if the hopping path is too close to any site,
the hopping is subject to being scattered and is considered
as modulated. In such a case, the hopping strength is
multiplied by a factor of α from the original value without
being scattered. For simplicity, we mainly discussed the
results for α ¼ 0 but the main conclusion does not change
for α∈ ½0; 2� (see SM Note 3).

We apply our SA-FB generator to all different 2D space
groups. In these processes, we utilize the distance-
dependent hopping between two hydrogen atoms, specifi-
cally JðdÞ ∝ ð1þ d=a0Þe−d=a0, and set the NN distance to
be 6.5a0, which can be modified as needed. When ΔEmin is
between 10−11 and 1 meVor below 10−11 meV, the lattices
are classified as the quasi-flat-band or strict-flat-band
lattices, respectively. The 1 meV threshold is chosen
because it is difficult to resolve it with most current
experimental techniques, while 10−11 meV is below the
floating point error. We summarize the results for each
group in Table I and list their details in the SM. Remarkably,
we find 1021 lattices containing flat bands, far exceeding
common expectations. Even when limiting the discussion
to the strict-flat-band lattices, there are still over 700. We
also made the inverse participation ratio calculations for all
the obtained flat bands (SMNote 4) and confirmed they are
all true flat bands that delocalized over many sites. The flat
bands in these lattices are almost continuously distributed
from ∼ − 0.5 eV to 0.4 eV, making it possible to customize
the energywhere the flat band appearswithin a certain range
by choosing the corresponding flat-band lattice (see SM
Note 5). Notably, with respect to this specific distance
dependence, half of them belong to the p3 group, while
none belong to the p1 and c2mm groups. These results
highlight the significant role of symmetry constraints.
In p1 lattices, which lack any form of rotational symmetry,
finding suitable optimization directions toward fully
destructive interference could be challenging for this

FIG. 2. Process of generating a flat band using the SA-FB generator. (a) Evolution of ΔEtemp and ΔEmin with the iterations.
(b) Random walk trajectories of the individual sites. (c) Initial configuration of the lattice, (d) the corresponding band structure of panel
(c), which contains no flat band. (e), (f) Intermediate lattice configuration, and its corresponding band structure, which contains a narrow
dispersive band. (g), (h) Final lattice configuration and its corresponding band structure, which contains a flat band highlighted in orange.
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hopping dependence. As a result, flat-band structures are
not found. Conversely, when symmetry constraints are
extreme, as observed in lattices belonging to the c2mm,
p4gm,p6, andp6mm groups, the sites can only be adjusted
within very limited ranges, resulting in similar lattice
configurations. If these lattices do not inherently possess
flat bands, achieving a flat-band lattice becomes nearly
impossible. Thus, only a limited number of flat-band
lattices are found. Interestingly, apart from the lattices
containing one or two flat bands, we also find some all-
band-flat lattices in which all bands are dispersionless [11]
(see SM Note 6).
To demonstrate the generality of our approach, we also

apply the SA-FB generator to a ð1=d2Þ-dependence model,
which was recently discovered in the system of 3d transition
metal adatoms on a noble metal surface with surface states,
such as Fe adatoms onAg(111). Experiments show that JðdÞ
can be quantitatively described by JðdÞ ¼ CΔ=d2, with
CΔ ≈ 290 meVnm2 [67]. We conducted a search across
all 2D space groups and found over 2000 flat-band lattices,
including more than 400 strict-flat-band lattices. This con-
firms the validity of our approach and the abundance of the
flat-band lattices. The list of ð1=d2Þ-dependence design
results is summarized in SM Table SI. All the structure
and band details of the flat-band lattices are listed in the SM.
As demonstrated above, abundant flat-band lattices can

be generated using our method. Extending this approach to
higher dimensions, multiple types of atoms, multiple
electron orbitals, or even incorporating other techniques
such as first-principles methods is feasible. Here, we verify
the expansibility of the SA-FB generator through first-
principles calculations of lattices composed of one or more
types of real atoms.

For simplicity, we choose two different kinds of atoms,
Na and Rb atoms, to generate flat-band lattices. Both of
these atoms have their outermost electron shells filled by
s orbitals. Rb is chosen because it is commonly used in
cold atom experiments. The first-principles calculations
are performed using the Vienna Ab Initio Simulation
Package (VASP) [60]. The NN distances between atoms
are set far enough to ensure that the energy bands near the
Fermi energy primarily originate mainly from the overlap
of the outermost s orbitals (3s for Na, 5s for Rb). Since
using VASP calculations at every step will be time-
consuming, we calculate JðdÞ with VASP and use it as
an input for the SA-FB generator. For the hopping
between the same type of atoms, JðdÞ is obtained by
comparing the tight-binding calculation with the bands
calculated using VASP for simple square lattices with
different lattice constants. The hopping between Na and
Rb is determined using various sized honeycomb like
structures with alternating Na and Rb atoms (SM Note 8).
Figure 3 shows two examples validated by VASP. The Na
flat-band lattice generated by the tight-binding model
contains three flat bands at ∼0.29, 0.19, and −0.05 eV,
respectively. One of them is retained in the VASP calcu-
lation at ∼ − 0.08 eV [see Figs. 3(a) and 3(c)]. The Na
and Rb flat-band lattice contains three flat bands at
similar energies in both the tight-binding model and
VASP [see Figs. 3(d) and 3(f)]. The detailed similarities
and differences between the bands calculated with the
tight-binding model and VASP can be better visualized in
the 2D display shown in SM Note 8. Despite minor
differences, the close similarity demonstrates the feasibil-
ity of extending the SA-FB generator to first-principles
calculations in real atom systems. The slight differences
may originate from the influence of the inner shell
electrons, which are absent in the tight-binding method
but present in VASP. As demonstrated for Na and Rb flat-
band lattices, our SA-FB generator can work for different
materials as the distance-dependent hopping is an adjust-
able input parameter, adaptable from the experiments or
first-principles calculations.
Before the summary, we briefly compare our SA-FB

generator with previous methods. First, similar to previous
methods, our new method can generate all the well-known
flat-band lattices such as the Lieb, kagome, breathing
Kagome [68,69], honeycomb-kagome [70–72], breathing
honeycomb-kagome [73], kagome-honeycomb [67,74],
and extended Lieb lattices [75] (SM Fig. S13). Second,
previous methods, except those searching through
existing materials, only generated a few additional flat-
band lattices beyond these well-known ones. We also
compared our results with the k-uniform tiling flat-band
lattices obtained by the brute-force method for the
number of sites smaller than 13 and found that all can
be found with our SA-FB generator. Our SA flat-band
lattice generator can essentially reproduce these lattices,
except for those with special requirements (SM Fig. S14

TABLE I. List of ð1þ d=a0Þe−d=a0 -dependence design results.

Group Quasi Strict Total

c1m1 28 1 29
p1, c2mm 0 0 0
p1g1 39 44 83
p1m1 36 25 61
p2 84 23 107
p2gg 66 72 138
p2mg 16 40 56
p2mm 8 63 71
p3 24 330 354
p31m 0 12 12
p3m1 0 36 36
p4 6 19 25
p4gm 1 0 1
p4mm 0 25 25
p6 0 3 3
p6mm 0 20 20
Total 308 713 1021
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and Table SIII). Third, our SA-FB generator can
produce several hundred strict-flat-band lattices, a number
far exceeding those predicted by any previous method.
In summary, we developed a general methodology for

constructing 2D flat-band lattices. By formulating the
problem of designing flat-band lattices as a mathematical
optimization task and applying the distance-dependent
hopping and space group symmetry constraints to reduce
the problem size, we gradually flattened the dispersive
bands into flat bands, alleviating the complexity of the task.
The SA-FB generator has rapidly identified more than 1000
2D flat-band lattices. Our results suggested a potentially
higher abundance of flat-band lattices than previously
anticipated. Furthermore, we found that systems with
higher-order NN hopping can produce more flat-band
lattices, contrary to the general impression that higher-
order NN hopping would destroy flat bands.
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